题目内容

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)(x∈R)的部分图象如图所示.
(1)求f(x)的表达式;
(2)设g(x)=f(x)-
3
f(x+
π
4
),求函数g(x)的最小值及相应的x的取值集合.
分析:(1)有图象中函数的最大值可求得A,利用函数的最大值时x的值以及与x轴的交点推断函数的周期求得ω把点(
π
12
,1
)代入即可求得φ,则三角函数的解析式可得.
(2)利用(1)中函数的解析式,利用两角和公式化简整理后,利用正弦函数的性质求得函数的最小值及x的值的集合.
解答:解:(1)由图象可知:A=1,
函数f(x)的周期T满足:
T
4
=
π
3
-
π
12
=
π
4
,T=π,
∴T=
ω
=π.∴ω=2.
∴f(x)=sin(2x+φ).
又f(x)图象过点(
π
12
,1
),
∴f(
π
12
)=1,
π
6
+φ=2kπ+
π
2
(k∈Z).
又|φ|<
π
2
,故φ=
π
3

∴f(x)=sin(2x+
π
3
)

(2)g(x)=f(x)-
3
f(x+
π
4
)
=sin(2x+
π
3
)
-
3
sin(2x+
π
2
+
π
3
)
=sin(2x+
π
3
)
-
3
sin(2x+
6
)
=
1
2
sin2x+
3
2
cos2x+
3
2
sin2x-
3
2
cos2x=2sin2x,
由2x=2kπ-
π
2
(k∈Z),
得x=kπ-
π
4
(k∈Z),
∴g(x)的最小值为-2,相应的x的取值集合为{x|x=kπ-
π
4
,k∈z}
点评:本题主要考查了求三角函数解析式,三角函数的值域等问题.考查了基础知识的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网