题目内容
14.若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4π,则其侧棱长为( )| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
分析 三棱锥的三条侧棱两两互相垂直,它的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长,即可求出其侧棱长.
解答 解:三棱锥的三条侧棱两两互相垂直,所以它的外接球就是它扩展为正方体的外接球,
因为外接球的表面积是4π,所以球的半径为1
所以正方体的对角线的长为:2,
所以侧棱长为$\frac{2\sqrt{3}}{3}$.
故选:B.
点评 本题主要考查球的表面积,几何体的外接球,考查空间想象能力,推理能力,解题的关键就是将三棱锥扩展成正方体,属于中档题.
练习册系列答案
相关题目