题目内容
设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′(
)=0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2(an+
)求数列{bn}的前n项和Sn.
| π |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2(an+
| 1 |
| 2an |
(I)∵f′(x)=an-an+1+an+2-an+1sinx-an+2cosx,f′(
)=0.
∴2an+1=an+an+2对任意n∈N*,都成立.
∴数列{an}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.
∴an=a1+(n-1)d=2+n-1=n+1.
(II)由(I)可得,bn=2(n+1+
)=2(n+1)+
,
∴Sn=2[2+3+…+(n+1)]+
+
+…+
=2×
+
=n2+3n+1-
.
| π |
| 2 |
∴2an+1=an+an+2对任意n∈N*,都成立.
∴数列{an}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.
∴an=a1+(n-1)d=2+n-1=n+1.
(II)由(I)可得,bn=2(n+1+
| 1 |
| 2n+1 |
| 1 |
| 2n |
∴Sn=2[2+3+…+(n+1)]+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=2×
| n(2+n+1) |
| 2 |
| ||||
1-
|
=n2+3n+1-
| 1 |
| 2n |
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|