题目内容

设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx满足f′(
π
2
)=0
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2(an+
1
2an
)求数列{bn}的前n项和Sn
(I)∵f(x)=an-an+1+an+2-an+1sinx-an+2cosx,f(
π
2
)=0

∴2an+1=an+an+2对任意n∈N*,都成立.
∴数列{an}是等差数列,设公差为d,∵a1=2,a2+a4=8,∴2+d+2+3d=8,解得d=1.
∴an=a1+(n-1)d=2+n-1=n+1.
(II)由(I)可得,bn=2(n+1+
1
2n+1
)
=2(n+1)+
1
2n

∴Sn=2[2+3+…+(n+1)]+
1
2
+
1
22
+…+
1
2n

=
n(2+n+1)
2
+
1
2
[1-(
1
2
)n]
1-
1
2

=n2+3n+1-
1
2n
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网