题目内容

已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为________.

-1
分析:根据题意可知∠F1PF2=90°|F1F2|=2c,进而利用∠PF1F2=30°,∠PF2F1=60°求得|PF1|和|PF2|,进而利用椭圆定义建立等式,求得a和c的关系,则离心率可得.
解答:依题意可知∠F1PF2=90°|F1F2|=2c,
∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c
由椭圆定义可知|PF1|+|PF2|=2a=( +1)c
∴e==-1
故答案为:-1.
点评:本题主要考查了椭圆的简单性质特别是椭圆定义的运用,考查运算能力.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网