题目内容
已知F1,F2为椭圆的两个焦点,P为椭圆上一点,若∠PF1F2:∠PF2F1:∠F1PF2=1:2:3,则此椭圆的离心率为________.
分析:根据题意可知∠F1PF2=90°|F1F2|=2c,进而利用∠PF1F2=30°,∠PF2F1=60°求得|PF1|和|PF2|,进而利用椭圆定义建立等式,求得a和c的关系,则离心率可得.
解答:依题意可知∠F1PF2=90°|F1F2|=2c,
∴|PF1|=
由椭圆定义可知|PF1|+|PF2|=2a=(
∴e=
故答案为:
点评:本题主要考查了椭圆的简单性质特别是椭圆定义的运用,考查运算能力.属基础题.
练习册系列答案
相关题目
已知F1,F2为椭圆
+
=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=
,则椭圆的方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|