题目内容

在△ABC中,A,B,C分别表示三角形的三个内角,则下列四个结论中正确的个数是
①A>B?cosA>cosB;②A>B?sinA>sinB;③A>B?tanA>tanB;④A>B?cos2A<cos2B


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:令A=120°,B=10°则可判断cosB>0,cosA<0,tanA<0,tanB>0进而推断①③不正确;把③④分别进行和差化积,进而根据A,B的大小判断三角函数的正负.进而得到答案.
解答:∵A,B,C分别表示三角形的三个内角,
∴A,B,C∈(0,π)
令A=120°,B=10°则cosB>0,cosA<0,tanA<0,tanB>0故①③不正确.
sinA-sinB=2sincos,cos2A-cos2B=-sinsin
如果A>B则sin>0,cos,故②④正确.
故选B.
点评:本题主要考查了三角函数的关系在解三角形中的应用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网