搜索
题目内容
有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分,小张摸一次得分的期望是
分.
试题答案
相关练习册答案
试题分析:由题意知小张摸一次得分X的可能取值是0,50,100,当得分为100时,表示从十个球中取五个球,取到的都是颜色相同的球,从10个球中取5个共有
种结果,而球的颜色都相同包括两种情况,则
,当得分50时表取到的球四个颜色相同,则
,
,
故
.
练习册系列答案
导学案广东经济出版社系列答案
优佳好书系讲与练系列答案
课课练与单元检测系列答案
高中基础训练山东教育出版社系列答案
名校学案名校小状元系列答案
全优课堂满分备考系列答案
专题王系列答案
学考联通寒假作业冲刺中考长江出版社系列答案
必胜课课课达标系列答案
非常考生课时高效作业本 系列答案
相关题目
一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为
、
,记
.
(Ⅰ)求
取最大值的概率;
(Ⅱ)求
的分布列及数学期望.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
一次购物量
(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顾客数(人)
20
10
5
结算时间(分钟/人)
0.5
1
1.5
2
2.5
已知这50位顾客中一次购物量少于10件的顾客占80%.
(1)确定
与
的值;
(2)若将频率视为概率,求顾客一次购物的结算时间
的分布列与数学期望;
(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
已知
(
x
-
2
x
2
)
n
(n∈N
*
)展开式中二项式系数和为256.
(1)此展开式中有没有常数项?有理项的个数是几个?并说明理由.
(2)求展开式中系数最小的项.
袋中有5只乒乓球,编号为1至5,从袋中任取3只,若以X表示取到的球中的最大号码,试写出X的概率分布.
随机变量ξ的分布列如图,其中a,b,
成等差数列,则
.
ξ
-1
0
1
P
a
b
一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为
,记
.
(1)分别求出
取得最大值和最小值时的概率; (2)求
的分布列及数学期望.
已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=( )
A.-1.88
B.-2.88
C.5. 76
D.6.76
随机变量
的分布列如右:其中
成等差数列,若
,则
的值是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案