题目内容

袋中装着标有数字1,2,3,4的卡片各1张,甲从袋中任取2张卡片(每张卡片被取出的可能性都相等),并记下卡面数字和为X,然后把卡片放回,叫做一次操作.
(1)求在一次操作中随机变量X的概率分布和数学期望E(X);
(2)甲进行四次操作,求至少有两次X不大于E(X)的概率.
【答案】分析:(1)由题设知,X可能的取值为:3,4,5,6,7;计算出随机变量X的概率分布进而利用求数学期望的公式得到X的数学期望E(X);
(2)记“一次操作所计分数X不大于E(X)”的事件记为C,则P(C)=. 设四次操作中事件C发生次数为Y,则Y~B(4,).则其服从二项分布,所以所求事件的概率为P(Y≥2)=
解答:解:(1)由题设知,X可能的取值为:3,4,5,6,7.
随机变量X的概率分布为
X34567
P
因此X的数学期望E(X)=(3+4+6+7)×+5×=5.
(2)记“一次操作所计分数X不大于E(X)”的事件记为C,则
P(C)=P(“X=3”或“X=4”或“X=5”)=++=. 
设四次操作中事件C发生次数为Y,则Y~B(4,
则所求事件的概率为P(Y≥2)=1-C41××(3-C4×(4=
点评:解决此类题目的关键是正确求得随机变量的取值以及每个值得概率,熟练掌握求离散型随机变量的概率分布的方法步骤.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网