题目内容

已知:函数f(x)=psinωx•cosωx-cos2ωx(p>0,ω>0)的最大值为
1
2
,最小正周期为
π
2

(1)求:p,ω的值,f(x)的解析式;
(2)若△ABC的三条边为a,b,c,满足a2=bc,a边所对的角为A.求:角A的取值范围及函数f(A)的值域.
分析:(1)化简函数为一个角的一个三角函数的形式,通过最大值和周期,求出p和ω,得到函数的解析式.
(2)利用余弦定理和基本不等式,求出cosA的最小值,确定A的范围,然后利用正弦函数的值域,求出函数f(A)的值域.
解答:解:(1)f(x)=
p
2
sin2ωx-
1
2
cos2ωx-
1
2
=
p2+1
2
sin(2ωx-arctan
1
p
)-
1
2

=
π
2
,得ω=2(2分)
p2+1
2
-
1
2
=
1
2
及p>0,得p=
3
(4分)∴f(x)=sin(4x-
π
6
)-
1
2
(6分)
(2)cosA=
b2+c2-a2
2bc
=
b2+c2-bc
2bc
2bc-bc
2bc
=
1
2
.(8分)
A为三角形内角,所以0<A≤
π
3
(10分)
-
π
6
<4A-
π
6
6
-
1
2
≤sin(4A-
π
6
)≤1
,∴-1≤f(A)≤
1
2
(14分)
点评:本题是中档题,考查三角函数的化简求值,解三角形的有关知识,余弦定理的应用,注意解答范围和三角函数的值域的关系,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网