ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ´Îº¯Êýy=x2£¬ÏÖÈ¡xÖáÉϵĵ㣬·Ö±ðΪA1(1£¬0)£¬A2(2£¬0)£¬A3(3£¬0)£¬¡£¬An(n£¬0)£¬¡£¬¹ýÕâЩµã·Ö±ð×÷xÖá´¹Ïߣ¬ÓëÅ×ÎïÏß·Ö±ð½»ÓÚA¡ä1£¬A¡ä2£¬A¡ä3£¬¡£¬A¡än¡£¬¼ÇÓÉÏß¶ÎA¡änAn£¬AnAn+1£¬An+1A¡än+1¼°Å×ÎïÏß»¡A¡än+1A¡änËùΧ³ÉµÄÇú±ßÌÝÐεÄÃæ»ýΪan£¬
(¢ñ)ÇóÊýÁÐ{an}µÄͨÏʽ£»
(¢ò)×÷Ö±Ïßy=
ÓëA¡änAn(n =1£¬2£¬3£¬¡)½»ÓÚBn£¬¼ÇеÄÇú±ßÌÝÐÎA¡änBnBn+1A¡än+1£¬Ãæ»ýΪbn£¬Çó
µÄǰnÏîºÍSn£»
(¢ó)ÔÚ(¢ò)µÄǰÌáÏ£¬×÷Ö±Ïßy=x£¬ÓëA¡änAn(n=1£¬2£¬3£¬¡)½»ÓÚCn£¬¼ÇRt¡÷Cn+1An+1AnÃæ»ýÓëÇú±ßÌÝÐÎA¡änBnBn+1A¡än+1Ãæ»ýÖ®±ÈΪPn£¬ÇóÖ¤£ºP1+
¡£
(¢ñ)ÇóÊýÁÐ{an}µÄͨÏʽ£»
(¢ò)×÷Ö±Ïßy=
(¢ó)ÔÚ(¢ò)µÄǰÌáÏ£¬×÷Ö±Ïßy=x£¬ÓëA¡änAn(n=1£¬2£¬3£¬¡)½»ÓÚCn£¬¼ÇRt¡÷Cn+1An+1AnÃæ»ýÓëÇú±ßÌÝÐÎA¡änBnBn+1A¡än+1Ãæ»ýÖ®±ÈΪPn£¬ÇóÖ¤£ºP1+
½â£º(¢ñ)
£»
(¢ò)ÒÀÌâÒ⣬
£¬
£¬
¡à
£¬
¡à![]()
£¬
¡à
¡£
(¢ó)¼ÇÖ±½ÇÈý½ÇÐÎCn+1An+1AnÃæ»ýΪdn£¬
Ôò
£¬
¡à
£¬
¡à![]()
£¬
Ôʽ¼´Ö¤£º
£¬
ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
¢Ùµ±n=1ʱ£¬×ó±ß=1£¬ÓÒ±ß=lna£¬×ó±ß£¾Óұߣ¬ÃüÌâ³ÉÁ¢£»
¢Ú¼ÙÉèn=k£¨k¡Ý1£¬k¡ÊN*£©Ê±£¬ÃüÌâ³ÉÁ¢£¬
¼´
£¬
µ±n=k+1ʱ£¬
£¬
ÏÂÖ¤£º![]()
![]()
¹¹Ô캯Êý
£¬
£¬¡àf£¨x£©ÔÚ
µ¥µ÷µÝÔö£¬
ËùÒÔµ±
ʱ£¬
£¬¡àx£¾ln£¨1+x£©£¬
¡ß
£¬
¡à
£¬
¹ÊÃüÌâ¶Ôn=k+1ʱҲ³ÉÁ¢£¬
Óɢ٢ڵã¬
¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬¹ÊÔÃüÌâ³ÉÁ¢¡£
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿