题目内容
(Ⅰ)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
【答案】分析:(I)欲证平面EFG⊥平面PDC,根据面面垂直的判定定理可知在平面EFG内一直线与平面PDC垂直,而根据线面垂直的判定定理可知GF⊥平面PDC,GF∈平面EFG,满足定理条件;
(II)不妨设MA=1,求出PD=AD,得到Vp-ABCD=
S正方形ABCD,求出PD,根据DA⊥面MAB,所以DA即为点P到平面MAB的距离,根据三棱锥的体积公式求出体积得到V P-MAB:V P-ABCD的比值.
解答:解:(I)证明:由已知MA⊥平面ABCD,PD∥MA,
所以PD⊥平面ABCD
又BC∈平面ABCD,
因为四边形ABCD为正方形,
所以PD⊥BC
又PD∩DC=D,
因此BC⊥平面PDC
在△PBC中,因为G、F分别是PB、PC中点,
所以GF∥BC
因此GF⊥平面PDC
又GF∈平面EFG,
所以平面EFG⊥平面PDC;
(Ⅱ)因为PD⊥平面ABCD,
四边形ABCD为正方形,不妨设MA=1,
则PD=AD=2,所以Vp-ABCD=
S正方形ABCD,PD=
由于DA⊥面MAB的距离
所以DA即为点P到平面MAB的距离,
三棱锥Vp-MAB=
×
×1×2×2=
,
所以V P-MAB:V P-ABCD=1:4.
点评:本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力.
(II)不妨设MA=1,求出PD=AD,得到Vp-ABCD=
解答:解:(I)证明:由已知MA⊥平面ABCD,PD∥MA,
所以PD⊥平面ABCD
又BC∈平面ABCD,
因为四边形ABCD为正方形,
所以PD⊥BC
又PD∩DC=D,
因此BC⊥平面PDC
在△PBC中,因为G、F分别是PB、PC中点,
所以GF∥BC
因此GF⊥平面PDC
又GF∈平面EFG,
所以平面EFG⊥平面PDC;
(Ⅱ)因为PD⊥平面ABCD,
四边形ABCD为正方形,不妨设MA=1,
则PD=AD=2,所以Vp-ABCD=
由于DA⊥面MAB的距离
所以DA即为点P到平面MAB的距离,
三棱锥Vp-MAB=
所以V P-MAB:V P-ABCD=1:4.
点评:本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力.
练习册系列答案
相关题目