题目内容

( (本题满分15分

)椭圆的中心在原点,焦点在轴上,离心率为,并与直线 相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,过圆上任意一点作椭圆的两条切线. 求证:

 

 

【答案】

解:(Ⅰ)由

    椭圆方程可设为 .

又,直线与椭圆相切,代入后方程

满足 .由此得

故椭圆的方程为    ----------------6分

(Ⅱ)设.当时,有一条切线斜率不存在,此时,刚好

可见,另一条切线平行于轴,;   ----------------7分

,则两条切线斜率存在.设直线的斜率为

则其方程为

高三数学理科一模参答—4(共6页)

 
代入并整理得:

              ---------------9分

可得:             ---------------11分

注意到直线的斜率也适合这个关系,所以的斜率就是上述方程的两根,由韦达定理,.                     ---------------13分

由于点在圆上,

所以这就证明了.

综上所述,过圆上任意一点作椭圆的两条切线,总有.  ------15分

 

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网