题目内容
已知函数f(x)=sin(2x+φ) (|φ|<
),且f(
)=-1,
(1)求φ的值;
(2)若f(α)=
,f(β+
)=
,且
<α<
,0<β<
,求cos(2α+2β-
)的值.
| π |
| 2 |
| 5π |
| 6 |
(1)求φ的值;
(2)若f(α)=
| 3 |
| 5 |
| π |
| 12 |
| 5 |
| 13 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 6 |
分析:(1)由条件可得2×
+φ=2kπ+
,k∈Z;再由|φ|<
,求得φ的值.
(2)由(1)可得f(x)=sin(2x-
),2α-
∈(
,
),2β∈(0,
),求得sin(2α-
)=
,cos(2α-
)=
,sin2β=
,cos2β=
,再利用两角和的余弦公式求得cos(2α+2β-
)的值.
| 5π |
| 6 |
| 3π |
| 2 |
| π |
| 2 |
(2)由(1)可得f(x)=sin(2x-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
| π |
| 6 |
解答:解:(1)f(x)=sin(2x+φ),且f(
)=-1,∴2×
+φ=2kπ+
,k∈Z;
∵|φ|<
,∴φ=-
.
(2)由(1)得f(x)=sin(2x-
),
∵且
<α<
,0<β<
,∴2α-
∈(
,
),2β∈(0,
),
f(α)=
,f(β+
)=
,∴sin(2α-
)=
,
cos(2α-
)=
,sin2β=
,cos2β=
,
可得cos(2α+2β-
)=cos(2α-
+2β)=cos(2α-
)cos2β-sin(2α-
)sin2β=
.
| 5π |
| 6 |
| 5π |
| 6 |
| 3π |
| 2 |
∵|φ|<
| π |
| 2 |
| π |
| 6 |
(2)由(1)得f(x)=sin(2x-
| π |
| 6 |
∵且
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 2 |
f(α)=
| 3 |
| 5 |
| π |
| 12 |
| 5 |
| 13 |
| π |
| 6 |
| 3 |
| 5 |
cos(2α-
| π |
| 6 |
| 4 |
| 5 |
| 5 |
| 13 |
| 12 |
| 13 |
可得cos(2α+2β-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 33 |
| 65 |
点评:本题主要考查两角和差的正弦、余弦公式的应用,同角三角函数的基本关系的应用,属于中档题.
练习册系列答案
相关题目