题目内容
2.已知sin(α+$\frac{3π}{2}$)>0,tanα<0,则角α是二象限角.分析 由三角函数的定义得出终边上一点的横纵坐标的符号即可得出所在的象限.
解答 解:∵sin(α+$\frac{3π}{2}$)=-cosα>0,
∴cosα<0,
∵tanα<0,
∴角α是第二象限角.
故答案为:二.
点评 本题考查三角函数的符号及三角函数的定义,属于基本题.
练习册系列答案
相关题目
14.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}({3}^{x}+\frac{1}{2}),x≤0}\\{{3}^{-x},x>0}\end{array}\right.$ 的值域为 ( )
| A. | .(0,1) | B. | (-1,1] | C. | (-1,1) | D. | [-1,1) |
15.若函数f(x)=log4x,则f(64)=( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
7.设随机变量X的概率分布列为p(X=k)=a($\frac{2}{3}$)k,k=1,2,3,则a的值为( )
| A. | $\frac{27}{19}$ | B. | $\frac{17}{19}$ | C. | $\frac{27}{38}$ | D. | $\frac{17}{38}$ |
14.在△ABC中,$\frac{sinA}{sinB}$等于( )
| A. | $\frac{b}{a}$ | B. | $\frac{a}{b}$ | C. | $\frac{a}{c}$ | D. | $\frac{c}{a}$ |
11.对于函数f(x)=ax3+blog32x+1,若f(-1)=2,则f(1)=( )
| A. | 2 | B. | 1 | C. | -2 | D. | 0 |
12.某校随机抽取100名学生高中学业水平考试的X科成绩,并将成绩分成5组,得到频率分布表(部分)如下.
(Ⅰ)直接写出频率分布表中①②③的值;
(Ⅱ)如果每组学生的平均分都是分组端点的平均值(例:第1组5个学生的平均分是$\frac{50+60}{2}=55$),估计该校学生本次学业水平测试X科的平均分;
(Ⅲ)学校向高校推荐了第5组的A、B、C和第4组的D、E一共5位同学,学业水平考试后,高校决定在这5名学生中随机抽取2名学生进行面试.求第4组至少有一名学生参加面试的概率?
(Ⅰ)直接写出频率分布表中①②③的值;
(Ⅱ)如果每组学生的平均分都是分组端点的平均值(例:第1组5个学生的平均分是$\frac{50+60}{2}=55$),估计该校学生本次学业水平测试X科的平均分;
(Ⅲ)学校向高校推荐了第5组的A、B、C和第4组的D、E一共5位同学,学业水平考试后,高校决定在这5名学生中随机抽取2名学生进行面试.求第4组至少有一名学生参加面试的概率?
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [50,60) | 5 | 0.05 |
| 第2组 | [60,70) | ① | 0.35 |
| 第3组 | [70,80) | 30 | ② |
| 第4组 | [80,90) | 20 | 0.20 |
| 第5组 | [90,100] | 10 | 0.10 |
| 合计 | 100 | ③ | |