题目内容
已知函数f(x)=sin
cos
+
cos2
.
(1)求方程f(x)=0的解集;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f(x)的值域.
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
(1)求方程f(x)=0的解集;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f(x)的值域.
(1)法1:由f(x)=0,
得sin
cos
+
cos2
=cos
(sin
+
cos
)=0,
由cos
=0,得
=kπ+
,
∴x=2kπ+π(k∈Z);
由sin
+
cos
=0,得tan
=-
,
∴
=kπ-
,即x=2kπ-
(k∈Z),
则方程f(x)=0的解集为{x|2kπ+π或2kπ-
(k∈Z)};
法2:f(x)=
sinx+
(cosx+1)
=
sinx+
cosx+
=sin(x+
)+
,
由f(x)=0,得sin(x+
)=-
,
可得x+
=kπ-(-1)k
(k∈Z),即x=kπ-(-1)k
-
(k∈Z),
则方程f(x)=0的解集为{x|x=kπ-(-1)k
-
(k∈Z)};
(2)∵b2=ac,且a2+c2≥2ac(当且仅当a=c时取等号),
∴由余弦定理得cosB=
=
≥
,
又B为三角形的内角,
∴0<B≤
,
由题意得x=B,即x∈(0,
],
f(x)=
sinx+
(cosx+1)
=
sinx+
cosx+
=sin(x+
)+
,
∵x+
∈(
,
],
则此时函数f(x)的值域为[
,
+1].
得sin
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 3 |
| x |
| 2 |
由cos
| x |
| 2 |
| x |
| 2 |
| π |
| 2 |
∴x=2kπ+π(k∈Z);
由sin
| x |
| 2 |
| 3 |
| x |
| 2 |
| x |
| 2 |
| 3 |
∴
| x |
| 2 |
| π |
| 3 |
| 2π |
| 3 |
则方程f(x)=0的解集为{x|2kπ+π或2kπ-
| 2π |
| 3 |
法2:f(x)=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| π |
| 3 |
| ||
| 2 |
由f(x)=0,得sin(x+
| π |
| 3 |
| ||
| 2 |
可得x+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
则方程f(x)=0的解集为{x|x=kπ-(-1)k
| π |
| 3 |
| π |
| 3 |
(2)∵b2=ac,且a2+c2≥2ac(当且仅当a=c时取等号),
∴由余弦定理得cosB=
| a2+c2-b2 |
| 2ac |
| a2+c2-ac |
| 2ac |
| 1 |
| 2 |
又B为三角形的内角,
∴0<B≤
| π |
| 3 |
由题意得x=B,即x∈(0,
| π |
| 3 |
f(x)=
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
| π |
| 3 |
| ||
| 2 |
∵x+
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
则此时函数f(x)的值域为[
| 3 |
| ||
| 2 |
练习册系列答案
相关题目