题目内容
已知数列{an}是公差为正的等差数列,其前n和为Sn,点(n,Sn)在抛物线y=
x2+
x上;各项都为正数的等比数列{bn}满足b1b3=
,b5=
.
(1)求数列{an},{bn}的通项公式;
(2)记cn=2an-bn,求数列{cn}的前n项和Tn.
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 16 |
| 1 |
| 32 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=2an-bn,求数列{cn}的前n项和Tn.
分析:(1)依题意,Sn=
n2+
n,利用等差数列的性质可求得{an}的通项公式,由b1b3=
,b5=
可求得{bn}的通项公式;
(2)cn=2an-bn,利用分组求和的方法即可求得数列{cn}的前n项和Tn.
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 16 |
| 1 |
| 32 |
(2)cn=2an-bn,利用分组求和的方法即可求得数列{cn}的前n项和Tn.
解答:解:(1)∵点(n,Sn)在抛物线y=
x2+
x上,
∴Sn=
n2+
n,
∴当n=1时,a1=2;
当n≥2时,an=Sn-Sn-1=
n2+
n-[
(n-1)2+
(n-1)]=3n-1;
当n=1时,也适合上式,
∴an=3n-1;
∵{bn}为各项都为正数的等比数列,且b1b3=b22=
,b5=b2•q3=
,
∴b2=
,公比q=
,
∴bn=b2•qn-2=
×(
)n-2=(
)n.
(2)∵cn=2an-bn=2(3n-1)-(
)n,
∴其前n项和Tn=c1+c2+…+cn
=[(6×1-2)+(6×2-2)+…+(6n-2)]-[
+(
)2+…+(
)n]
=
-2n-
=3n2+n-1+(
)n.
| 3 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 3 |
| 2 |
| 1 |
| 2 |
∴当n=1时,a1=2;
当n≥2时,an=Sn-Sn-1=
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
当n=1时,也适合上式,
∴an=3n-1;
∵{bn}为各项都为正数的等比数列,且b1b3=b22=
| 1 |
| 16 |
| 1 |
| 32 |
∴b2=
| 1 |
| 4 |
| 1 |
| 2 |
∴bn=b2•qn-2=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵cn=2an-bn=2(3n-1)-(
| 1 |
| 2 |
∴其前n项和Tn=c1+c2+…+cn
=[(6×1-2)+(6×2-2)+…+(6n-2)]-[
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| (6+6n)×n |
| 2 |
| ||||
1-
|
=3n2+n-1+(
| 1 |
| 2 |
点评:本题考查等差数列与等比数列的通项公式,着重考查等差数列与等比数列的分组求和与公式法求和,属于中档题.
练习册系列答案
相关题目