题目内容
正方体ABCD-A1B1C1D1的棱长为1,在正方体表面上与点A距离是
的点形成一条曲线,这条曲线的长度是
- A.

- B.

- C.

- D.

D
分析:本题首先要弄清楚曲线的形状,再根据曲线的性质及解析几何知识即可求出长度.
解答:由题意,此问题的实质是以A为球心、233为半径的球在正方体ABCD-A1B1C1D1各个面上交线的长度计算,
正方体的各个面根据与球心位置关系分成两类:ABCD、AA1DD1、AA1BB1为过球心的截面,截痕为大圆弧,
各弧圆心角为π6、A1B1C1D1、B1BCC1、D1DCC1为与球心距离为1的截面,
截痕为小圆弧,由于截面圆半径为r=33,故各段弧圆心角为π2.
∴这条曲线长度为3•π6•233+3•π2•33=536π
故选D.
点评:本题考查弧长公式的应用,解题时要认真审题,仔细观察,避免出错.
分析:本题首先要弄清楚曲线的形状,再根据曲线的性质及解析几何知识即可求出长度.
解答:由题意,此问题的实质是以A为球心、233为半径的球在正方体ABCD-A1B1C1D1各个面上交线的长度计算,
正方体的各个面根据与球心位置关系分成两类:ABCD、AA1DD1、AA1BB1为过球心的截面,截痕为大圆弧,
各弧圆心角为π6、A1B1C1D1、B1BCC1、D1DCC1为与球心距离为1的截面,
截痕为小圆弧,由于截面圆半径为r=33,故各段弧圆心角为π2.
∴这条曲线长度为3•π6•233+3•π2•33=536π
故选D.
点评:本题考查弧长公式的应用,解题时要认真审题,仔细观察,避免出错.
练习册系列答案
相关题目