题目内容
已知公比为正数的等比数列{an}满足:a1=3,前三项和S3=39.
(1)求数列{an}的通项公式;
(2)记bn=an•log3an,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)记bn=an•log3an,求数列{bn}的前n项和Tn.
(1)∵公比为正数的等比数列{an}中a1=3,S3=39
∴3+3q+3q2=39解得q=3或-4(舍去)
∴an=a1qn-1=3×3n-1=3n,
(2)∵bn=an•log3an,
∴bn=3n•log33n=n•3n,
∴Tn=1×3+2×32+3×33+…+n•3n; ①
3Tn=1×32+2×33+…+(n-1)•3n+n•3n+1;②
由①-②得-2Tn=3+32+33+…+3n-n•3n+1=
-n•3n+1=
(3n-1)-n•3n+1;
∴Tn=(
-
)3n+1+
∴数列{bn}的前n项和Tn=(
-
)3n+1+
∴3+3q+3q2=39解得q=3或-4(舍去)
∴an=a1qn-1=3×3n-1=3n,
(2)∵bn=an•log3an,
∴bn=3n•log33n=n•3n,
∴Tn=1×3+2×32+3×33+…+n•3n; ①
3Tn=1×32+2×33+…+(n-1)•3n+n•3n+1;②
由①-②得-2Tn=3+32+33+…+3n-n•3n+1=
| 3(1-3n) |
| 1-3 |
| 3 |
| 2 |
∴Tn=(
| n |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
∴数列{bn}的前n项和Tn=(
| n |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
练习册系列答案
相关题目