题目内容
已知等差数列{an}的公差为d,a3=5,a5=9,等比数列{bn}的公比为q,b1=1,b4=27,设Sn=a1b1+a2b2+a3b3+…+anbn,Tn=a1b1-a2b2+a3b3-…+(-1)n-1anbn(n∈N+).
(1)求S3和T3的值;
(2)设f(n)=(1-q)S2n-(1+q)T2n,求f(n)的表达式.
(1)求S3和T3的值;
(2)设f(n)=(1-q)S2n-(1+q)T2n,求f(n)的表达式.
分析:(1)利用等差数列和等比数列的通项公式即可得出;
(2)①利用“错位相减法”即可得出Sn,进而得到S2n;②利用两两结合和错位相减法即可得出T2n.进而得到f(n)
(2)①利用“错位相减法”即可得出Sn,进而得到S2n;②利用两两结合和错位相减法即可得出T2n.进而得到f(n)
解答:解:(1)∵a5=a3+2d,a3=5,a5=9,∴9=5+2d,解得d=2,∴an=a3+(n-3)d=5+(n-3)×2=2n-1,∴S3=1×1+3×3+5×9=55;
∵b4=b1q3,b1=1,b4=27,∴27=q3,解得q=3,∴bn=3n-1,∴T3=1×1-3×3+5×32=37.
(2)①∵Sn=1×1+3×31+5×32+…+(2n-1)•3n-1,
3Sn=1×3+3×32+…+(2n-3)•3n-1+(2n-1)•3n,
∴-2Sn=1+2×3+2×32+…+2×3n-1-(2n-1)•3n=1+2×
-(2n-1)•3n,
得Sn=-
-
+
=(n-1)•3n+1,
∴S2n=(2n-1)•32n+1.
②T2n=1×1-3×3+5×32-7×33+…+(4n-3)•32n-2-(4n-1)•32n-1
=-8-16×32-…-8n•32n-2
=-8(1×30+2×32+3×34+…+n•32n-2)
=-8•(
+
)
=
-n•32n.
∴f(n)=(1-3)•[(2n-1)•32n+1]-4×(
-n•32n)=(2-4n)•32n+2-4n-2•32n+2+4n•32n=4
∵b4=b1q3,b1=1,b4=27,∴27=q3,解得q=3,∴bn=3n-1,∴T3=1×1-3×3+5×32=37.
(2)①∵Sn=1×1+3×31+5×32+…+(2n-1)•3n-1,
3Sn=1×3+3×32+…+(2n-3)•3n-1+(2n-1)•3n,
∴-2Sn=1+2×3+2×32+…+2×3n-1-(2n-1)•3n=1+2×
| 3×(3n-1-1) |
| 3-1 |
得Sn=-
| 1 |
| 2 |
| 3n-3 |
| 2 |
| (2n-1)•3n |
| 2 |
∴S2n=(2n-1)•32n+1.
②T2n=1×1-3×3+5×32-7×33+…+(4n-3)•32n-2-(4n-1)•32n-1
=-8-16×32-…-8n•32n-2
=-8(1×30+2×32+3×34+…+n•32n-2)
=-8•(
| 32n-1 |
| -16 |
| n•32n |
| 8 |
=
| 32n-1 |
| 2 |
∴f(n)=(1-3)•[(2n-1)•32n+1]-4×(
| 32n-1 |
| 2 |
点评:熟练掌握等差数列和等比数列的通项公式、“错位相减法”、分组两两结合等方法是解题的关键.
练习册系列答案
相关题目