题目内容

已知函数数学公式在[1,+∞)上单调递增,则a的取值范围是________.

a≥0
分析:求导函数可得(x>0),函数在[1,+∞)上单调递增,转化为≥0在[1,+∞)上恒成立,分离参数可得a≥-2x2+,求出右边函数的最大值,即可得到结论.
解答:求导函数可得(x>0)
∵函数在[1,+∞)上单调递增,
≥0在[1,+∞)上恒成立
∴a≥-2x2+
令g(x)=-2x2+,则g′(x)=-4x-≤0在[1,+∞)上恒成立
∴函数g(x)=-2x2+在[1,+∞)上单调减
∴x=1时,函数g(x)=-2x2+取得最大值0
∴a≥0
故答案为:a≥0
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,求函数的最值是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网