题目内容
(2013•石景山区一模)已知函数f(x)=sin(2x+
)+cos2x.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知f(A)=
,a=2,B=
,求△ABC的面积.
| π |
| 6 |
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知f(A)=
| ||
| 2 |
| π |
| 3 |
分析:(Ⅰ)利用两角和差的正弦公化简函数的解析式为
sin(2x+
),令 2kπ-
≤2x+
≤2kπ+
,k∈z,求得x的范围,即可求得f(x)的单调递增区间.
(Ⅱ)由已知f(A)=
,可得 sin(2A+
)=
,求得A=
,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由 S=
ab•sinC,运算求得结果.
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
(Ⅱ)由已知f(A)=
| ||
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 2 |
解答:解:(Ⅰ)f(x)=sin(2x+
)+cos2x=sin2xcos
+cos2xsin
+cos2x
=
sin2x+
cos2x=
(
sin2x+
cos2x)=
sin(2x+
).
令 2kπ-
≤2x+
≤2kπ+
,k∈z,求得 kπ-
≤x≤kπ+
,
函数f(x)的单调递增区间为[kπ-
,kπ+
],k∈z.
(Ⅱ)由已知f(A)=
,可得 sin(2A+
)=
,
因为A为△ABC内角,由题意知0<A<π,所以
<2A+
<
,
因此,2A+
=
,解得A=
.
由正弦定理
=
,得b=
,…(10分)
由A=
,由B=
,可得 sinC=
,…(12分)
∴S=
ab•sinC=
×2×
×
=
.
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| ||
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 3 |
令 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 12 |
| π |
| 12 |
函数f(x)的单调递增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
(Ⅱ)由已知f(A)=
| ||
| 2 |
| π |
| 3 |
| 1 |
| 2 |
因为A为△ABC内角,由题意知0<A<π,所以
| π |
| 3 |
| π |
| 3 |
| 5π |
| 3 |
因此,2A+
| π |
| 3 |
| 5π |
| 6 |
| π |
| 4 |
由正弦定理
| a |
| sinA |
| b |
| sinB |
| 6 |
由A=
| π |
| 4 |
| π |
| 3 |
| ||||
| 4 |
∴S=
| 1 |
| 2 |
| 1 |
| 2 |
| 6 |
| ||||
| 4 |
3+
| ||
| 2 |
点评:本题主要考查两角和差的正弦公式的应用,正弦函数的单调性,正弦定理以及根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目