搜索
题目内容
函数y=f(x)定义在区间(-3,7)上,其导函数如右图所示,则函数y=f(x)在区间(-3,7)上极小值的个数是
2
2
个.
试题答案
相关练习册答案
分析:
函数在极小值点处,导数为0,且导函数左负右正,根据图象可得结论.
解答:
解:函数在极小值点处,导数为0,且导函数左负右正,根据图象可知,O,C为极小值点,
故答案为:2
点评:
本题以导函数的图象为载体,考查函数的极值,解题的关键是函数在极小值点处,导数为0,且导函数左负右正.
练习册系列答案
寒假作业中国地图出版社系列答案
中考复习攻略南京师范大学出版社系列答案
智多星归类复习测试卷系列答案
智多星模拟加真题测试卷系列答案
毕业升学考卷大集结系列答案
毕业升学冲刺必备方案系列答案
状元坊广东中考备考用书系列答案
百年学典中考风向标系列答案
百校联盟中考冲刺名校模拟卷系列答案
夺A闯关一路领先中考模拟密卷系列答案
相关题目
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1
(1)求证:f(0)=1且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数;
(3)设集合A=(x,y)|f(-x
2
+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求实数a的取值范围.
7、设函数y=f(x)定义在实数集上,则函数y=f(x-1)与y=f(1-x)的图象关于( )
A、直线y=0对称
B、直线x=0对称
C、直线y=1对称
D、直线x=1对称
函数y=f(x)定义在R上单调递减且f(0)≠0,对任意实数m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x
2
)•f(y
2
)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,则a的取值范围是
.
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1
(1)求证:f(0)=1 且当x<0时,f(x)>1
(2)求证:f(x)在R上是减函数.
奇函数y=f(x)定义在[-1,1]上,且是减函数,若f(1-a)+f(1-2a)>0,则实数a的取值范围是
2
3
<a≤1
2
3
<a≤1
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案