题目内容
(2012•天津)已知函数f(x)=sin(2x+
)+sin(2x-
)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 3 |
| π |
| 3 |
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
分析:(1)利用正弦函数的两角和与差的公式与辅助角公式将f(x)=sin(2x+
)+sin(2x-
)+2cos2x-1化为f(x)=
sin(2x+
),即可求得函数f(x)的最小正周期;
(2)可分析得到函数f(x)在区间[-
,
]上是增函数,在区间[
,
]上是减函数,从而可求得f(x)在区间[-
,
]上的最大值和最小值.
| π |
| 3 |
| π |
| 3 |
| 2 |
| π |
| 4 |
(2)可分析得到函数f(x)在区间[-
| π |
| 4 |
| π |
| 8 |
| π |
| 8 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解:(1)∵f(x)=sin2x•cos
+cos2x•sin
+sin2x•cos
-cos2x•sin
+cos2x
=sin2x+cos2x
=
sin(2x+
),
∴函数f(x)的最小正周期T=
=π.
(2)∵函数f(x)在区间[-
,
]上是增函数,在区间[
,
]上是减函数,
又f(-
)=-1,f(
)=
,f(
)=1,
∴函数f(x)在区间[-
,
]上的最大值为
,最小值为-1.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=sin2x+cos2x
=
| 2 |
| π |
| 4 |
∴函数f(x)的最小正周期T=
| 2π |
| 2 |
(2)∵函数f(x)在区间[-
| π |
| 4 |
| π |
| 8 |
| π |
| 8 |
| π |
| 4 |
又f(-
| π |
| 4 |
| π |
| 8 |
| 2 |
| π |
| 4 |
∴函数f(x)在区间[-
| π |
| 4 |
| π |
| 4 |
| 2 |
点评:本题考查三角函数中的恒等变换应用,着重考查正弦函数的两角和与差的公式与辅助角公式的应用,考查正弦函数的性质,求得f(x)=
sin(2x+
)是关键,属于中档题.
| 2 |
| π |
| 4 |
练习册系列答案
相关题目