题目内容

(本题满分15) 四棱锥PABCD中,PA⊥平面ABCDEAD的中点,ABCE为菱形,

BAD120°PAABGF分别是线段CEPB上的动点,且满足λ(01)

(Ⅰ) 求证:FG∥平面PDC

(Ⅱ) λ的值,使得二面角FCDG的平面角的正切值为

 

 

 

 

【答案】

方法一:

() 证明:如图以点A为原点建立空间直角坐标系Axyz,其中KBC的中点,

不妨设PA2,则

,得

设平面的法向量=(xyz),则

 

可取=(12),于是

,故,又因为FG平面PDC,即//平面 ……6

 () 解:

设平面的法向量,则

可取,又为平面的法向量.

,因为tancos

所以,解得(舍去)

               …………15

方法二:

() 证明:延长,连

得平行四边形,则//

所以

,则

所以//

因为平面平面

所以//平面     …………6

()解:作FM,作,连

为二面角的平面角.

,不妨设,则

  ,即      …………15

 

【解析】略

 

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网