题目内容
已知函数f(x)=2-(
sinx-cosx)2.
(Ⅰ)求f(
)的值和f(x)的最小正周期;
(Ⅱ)求函数在区间[-
,
]上的最大值和最小值.
| 3 |
(Ⅰ)求f(
| π |
| 3 |
(Ⅱ)求函数在区间[-
| π |
| 6 |
| π |
| 3 |
(I)f(
)=2-(
×
-
)2=2-1=1.
∵函数f(x)=2-(
sinx-cosx)2
=2-(3sin2x+cos2x-2
sinxcosx)
=2-(1+2sin2x-
sin2x)
=1-2sin2x+
sin2x
=cos2x+
sin2x
=2(
sin2x+
cos2x)
=2sin(2x+
)
∴函数f(x)的周期为T=
=π.
(II)当x∈[-
,
]时,(2x+
)∈[-
,
],
所以当x=-
时,函数取得最小值f(-
)=-1;
当x=
时,函数取得最大值f(
)=2.
| π |
| 3 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
∵函数f(x)=2-(
| 3 |
=2-(3sin2x+cos2x-2
| 3 |
=2-(1+2sin2x-
| 3 |
=1-2sin2x+
| 3 |
=cos2x+
| 3 |
=2(
| ||
| 2 |
| 1 |
| 2 |
=2sin(2x+
| π |
| 6 |
∴函数f(x)的周期为T=
| 2π |
| 2 |
(II)当x∈[-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
所以当x=-
| π |
| 6 |
| π |
| 6 |
当x=
| π |
| 6 |
| π |
| 6 |
练习册系列答案
相关题目