题目内容
在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1.
(1) 求证:a,b,c成等差数列;
(2) 若C=![]()
,求
的值。
[解析]:(1)由已知得sinAsinB+sinBsinC+1-2sin2B=1.故sinAsinB+sinBsinC=2sin2B
因为sinB不为0,所以sinA+sinC=2sinB再由正弦定理得a+c=2b,所以a,b,c成等差数列
(2)由余弦定理知
得
化简得![]()
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |