题目内容
已知函数f(x)=ln
,则f(x)是( )
| ex-e-x |
| 2 |
| A.非奇非偶函数,且在(0,+∝)上单调递增 |
| B.奇函数,且在R上单调递增 |
| C.非奇非偶函数,且在(0,+∝)上单调递减 |
| D.偶函数,且在R上单调递减 |
函数f(x)=ln
的定义域为
>0,
解得x>0,即{x|x>0}不关于原点对称,
因此函数是非奇非偶函数;
根据复合函数的单调性的判定方法,可知:函数f(x)=ln
在(0,+∝)上单调递增.
故选A.
| ex-e-x |
| 2 |
| ex-e-x |
| 2 |
解得x>0,即{x|x>0}不关于原点对称,
因此函数是非奇非偶函数;
根据复合函数的单调性的判定方法,可知:函数f(x)=ln
| ex-e-x |
| 2 |
故选A.
练习册系列答案
相关题目