题目内容
设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a、b、α、β均为非零实数,若f(1988)=3,则f(2013)的值为
- A.1
- B.5
- C.3
- D.不确定
B
分析:利用诱导公式即可得出:f(1988)=asin(1988π+α)+bcos(1988π+α)+4=asinα+bcosα+4,从而得asinα+bcosα=-1,再利用诱导公式即可得出f(2013).
解答:∵f(1988)=3,∴asin(1988π+α)+bcos(1988π+β)+4=3,得asinα+bcosβ=-1.
∴f(2013)=asin(2013π+α)+bcos(2013π+β)+4=-(asinα+bcosβ)+4=-(-1)+4=5.
故选B.
点评:熟练掌握诱导公式是解题的关键.
分析:利用诱导公式即可得出:f(1988)=asin(1988π+α)+bcos(1988π+α)+4=asinα+bcosα+4,从而得asinα+bcosα=-1,再利用诱导公式即可得出f(2013).
解答:∵f(1988)=3,∴asin(1988π+α)+bcos(1988π+β)+4=3,得asinα+bcosβ=-1.
∴f(2013)=asin(2013π+α)+bcos(2013π+β)+4=-(asinα+bcosβ)+4=-(-1)+4=5.
故选B.
点评:熟练掌握诱导公式是解题的关键.
练习册系列答案
相关题目