题目内容

下列函数中周期为π且图象关于直线x=
π
3
对称的函数是(  )
A、y=2sin(
1
2
x+
π
3
)
B、y=2sin(
1
2
x-
π
3
)
C、y=2sin(2x+
π
6
)
D、f(x)=2sin(2x-
π
6
)
分析:根据三角函数的最小正周期的求法和对称轴上取最值对选项逐一验证即可得到答案.
解答:解:选项A,C中周期为π,排除A,C.
将 x=
π
3
代入 y=2sin(2x+
π
3
)可得y=0≠±2,排除B
将 x=
π
3
代入 y=2sin(2x-
π
6
),y=2 取得最值.D对
故选D.
点评:本题主要考查三角函数最小正周期的求法和三角函数的对称性.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网