搜索
题目内容
f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的
[ ]
A.充要条件
B.充分而不必要的条件
C.必要而不充分的条件
D.既不充分也不必要的条件
试题答案
相关练习册答案
B
练习册系列答案
初中伴你学习新课程系列答案
同步训练与闯关系列答案
新支点卓越课堂系列答案
优干线测试卷系列答案
优干线课课练系列答案
励耘书业初中英语专题精析系列答案
百分百全能训练系列答案
轻巧夺冠周测月考直通中考系列答案
状元成才路创优作业100分系列答案
学习方法报系列答案
相关题目
已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f(x)g′(x)>f′(x)g(x),且f(x)=a
x
g(x)(a>0且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,对于有穷数列
f(n)
g(n)
=(n=1,2,…0)
,任取正整数k(1≤k≤10),则前k项和大于
15
16
的概率是( )
A.
3
10
B.
2
5
C.
1
2
D.
3
5
设二次函数f(x)=ax
2
+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log
2
[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
对于定义在区间[m,n]上的两个函数f(x)和g(x),如果对任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,则称函数f(x)与g(x)在[m,n]上是“友好”的,否则称“不友好”的.现在有两个函数f(x)=log
a
(x-3a)与
g(x)=lo
g
a
1
x-a
(a>0,a≠1),给定区间[a+2,a+3].
(1)若f(x)与g(x)在区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论函数f(x)与g(x)在区间[a+2,a+3]上是否“友好”.
(2013•韶关一模)设f(x)在区间I上有定义,若对?x
1
,x
2
∈I,都有
f(
x
1
+
x
2
2
)≥
f(
x
1
)+f(
x
2
)
2
,则称f(x)是区间I的向上凸函数;若对?x
1
,x
2
∈I,都有
f(
x
1
+
x
2
2
)≤
f(
x
1
)+f(
x
2
)
2
,则称f(x)是区间I的向下凸函数,有下列四个判断:
①若f(x)是区间I的向上凸函数,则-f(x)在区间I的向下凸函数;
②若f(x)和g(x)都是区间I的向上凸函数,则f(x)+g(x)是区间I的向上凸函数;
③若f(x)在区间I的向下凸函数,且f(x)≠0,则
1
f(x)
是区间I的向上凸函数;
④若f(x)是区间I的向上凸函数,?x
1
,x
2
,x
3
,x
4
∈I,则有f(
x
1
+
x
2
+
x
3
+
x
4
4
)≥
f(
x
1
)+f(
x
2
)+f(
x
3
)+f(
x
4
)
4
其中正确的结论个数是( )
A.1
B.2
C.3
D.4
已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log
2
(1-x)
(1)求f(x)及g(x)的解析式,并指出其单调性(无需证明).
(2)求使f(x)<0的x取值范围.
(3)设h
-1
(x)是h(x)=log
2
x的反函数,若存在唯一的x使
1-
h
-1
(x)
1+
h
-1
(x)
=m-
2
x
成立,求m的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案