题目内容
已知数列{an}的前n项和Sn满足Sn=2n+1,则当n≥2时,
+
+…+
=______.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
由Sn=2n+1 得,当n=1时,a1=S1=3,当n≥2时an=Sn-Sn-1=2 n-1∴an=
+
+…+
=
+
+
+…+
=
+
=
-(
)n-1
故答案为:
-(
)n-1
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 3 |
| ||||
1-
|
| 4 |
| 3 |
| 1 |
| 2 |
故答案为:
| 4 |
| 3 |
| 1 |
| 2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |