题目内容
(1)①证明:两角和的余
弦公式C(α+β):cos(α+β)=cos αcos β- sin αsin β;
②由C(α+β)推导两角和的正弦公式S(α+β):sin(α+β
)=sin αcos β+cos αsinβ.
(2)已知△ABC的面积S=
,
·
=3,且cos B=
,求cos C.
![]()
解
:(1)证明:①如图,在直角坐标系xOy内作单位圆O,
并作出角α,β与-β,使角α的始边为Ox,交⊙O于点P1,终边交⊙O于点P2;角β的始边为OP2,终边交⊙O于点P3;角-β的始边为Ox,终边交⊙O于点P4,
则P1(1,0),P2(cos α,sin α),
P3(cos(α+β),sin(α+β)),
P4(cos(-β),sin(-β)).
由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)
=[cos(-β)-cos α]2+[sin(-β)-sin α]2,
展开整理,得2-2cos(α+β)=2-2(cos αcos β-sin αsin β).
∴cos(α+β)=cos αcos β-sin αsin β.
②由①易得,cos(
-α)=sin α,sin(
-α)=cos α.
sin(α+β)=cos[
-(α+β)]=cos[(
-α)+(-β)]
=cos(
-α)cos(-β)-sin(
-α)sin(-β)
=sin
αcos β+cos αsin β.∴sin(α+β)=sin αcos β+cos αsin β.
(2)由题意,设△ABC的角B、C的对边分别为b、c,
则S=
bcsin A=
,即bcsin A=1.
又
·
=bc
cos A=3>0,∴A∈(0,
),cos A=3sin A.
又sin2A+cos2A=1,∴sin A=
,cos A=
.
由题知cos B=
,得sin B=
.
∴cos(A+B)=cos Acos B-sin Asin B=
.
∴cos C=cos[π-(A+B)]=-cos(A+
B)=-
.