题目内容
20.在直角坐标系xoy中,锐角α的顶点为坐标原点,始边在x轴的非负半轴上,角α的终边与单位圆交于点P($\frac{2\sqrt{5}}{5}$,y).(Ⅰ)求sinα和cosα的值;
(Ⅱ)求$\frac{sinα+cosα}{sinα-cosα}$的值.
分析 (Ⅰ)根据P坐标求出P到原点O的距离,利用任意角三角函数定义求出sinα和cosα的值即可;
(Ⅱ)把求出的sinα与cosα的值代入原式计算即可得到结果.
解答 解:(Ⅰ)由题意得$\sqrt{(\frac{2\sqrt{5}}{5})^{2}+{y}^{2}}$=1,
解得:y=±$\frac{\sqrt{5}}{5}$,
∵α是锐角,∴y=$\frac{\sqrt{5}}{5}$,
则sinα=$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$;
(Ⅱ)∵则sinα=$\frac{\sqrt{5}}{5}$,cosα=$\frac{2\sqrt{5}}{5}$,
∴原式=$\frac{\frac{\sqrt{5}}{5}+\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}-\frac{2\sqrt{5}}{5}}$=-3.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目
10.已知$sinx=\frac{{\sqrt{3}}}{5}(\frac{π}{2}<x<π)$,则x的值( )
| A. | $arcsin\frac{{\sqrt{3}}}{5}$ | B. | arcsin(-$\frac{\sqrt{3}}{5}$) | C. | π-arcsin$\frac{{\sqrt{3}}}{5}$ | D. | $\frac{π}{2}+arcsin\frac{{\sqrt{3}}}{5}$ |
8.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助.
参考公式及数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
| 60分以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
| 甲班(人数) | 3 | 6 | 11 | 18 | 12 |
| 乙班(人数) | 7 | 13 | 10 | 10 | 10 |
(Ⅰ)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助.
| 优秀人数 | 非优秀人数 | 合计 | |
| 甲班 | |||
| 乙班 | |||
| 合计 |
| P(Χ2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 |
| P(Χ2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
15.从同一顶点出发的三条棱长分别为1、1、$\sqrt{2}$的长方体的各顶点均在同一个球面上,则该球的体积为 ( )
| A. | $\frac{32π}{3}$ | B. | 4π | C. | 2π | D. | $\frac{4π}{3}$ |
5.sin600°=( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |