题目内容

直三棱柱ABC-A1B1C1中,AB⊥BC,E是A1C的中点,ED⊥A1C且交AC于D,A1A=AB=
2
2
BC

(I)证明:B1C1平面A1BC;
(II)证明:A1C⊥平面EDB;
(III)求平面A1AB与平面EDB所成的二面角的大小(仅考虑平面角为锐角的情况).
精英家教网

精英家教网
证明:(I)∵三棱柱ABC-A1B1C1中B1C1BC,(1分)
又BC?平面A1BC,且B1C1?平面A1BC,
∴B1C1平面A1BC(3分)
(II)∵三棱柱ABC-A1B1C1中A1A⊥AB,
∴Rt△A1AB中AB=
2
2
A1B
A1A=AB=
2
2
BC

∴BC=A1B,
∴△A1BC是等腰三角形(6分)
∵E是等腰△A1BC底边A1C的中点,
∴A1C⊥BE①
又依条件知A1C⊥ED②
且ED∩BE=E③
由①,②,③得A1C⊥平面EDB(8分)
(III)∵A1A、ED?平面A1AC,
且A1A、ED不平行,
故延长A1A,ED后必相交,
设交点为F,连接EF,如图
∴A1-BF-E是所求的二面角(10分)
依条件易证明Rt△A1EF≌Rt△A1AC∵E为A1C中点,
∴A为A1F中点∴AF=A1A=AB
∴∠A1BA=∠ABF=45°
∴∠A1FB=90°
即A1B⊥FB(12分)
又A1E⊥平面EFB,
∴EB⊥FB
∴∠A1BE是所求的二面角的平面角(13分)
∵E为等腰直角三角形A1BC底边中点,
∴∠A1BE=45°
故所求的二面角的大小为45°(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网