题目内容

已知函数f(x)=a(lnx-x)(a∈R).
(I)讨论函数f(x)的单调性;
(II)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,函数g(x)=在区间(2,3)上总存在极值,求实数m的取值范围.
【答案】分析:(I)利用导数研究函数的单调性,首先求出极值点,同时注意函数的定义域;
(II)已知函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,根据导数与直线斜率的关系可得f′(2)=1,将问题转化为二元一次方程有解问题,从而求解;
解答:解:(I)易知f(x)的定义域为(0,+∞),f′(x)=
当a<0时,令f′(x)=>0,即<0,解得增区间为(1,+∞),
减区间为(0,1);
当a>0时,令f′(x)=>0,即>0,解得增区间为(0,1),减区间为(1,+∞),
当a=0时,f(x)不是单调函数;
(II)∵函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,
∴f′(2)==tan45°=1,
∴a=-2,
f′(x)=
g(x)=x3+x2+)=x3+(+2)x2-2x,
g′(x)=3x2+(m+4)x-2,
∵g′(0)=-2<0,要使函数g(x)=x3+x2[+f′(x)]在区间(2,3)上总存在极值,
只需
解得-<m<-9;
点评:此题利用导数研究函数单调区间,以及导数所表示的几何意义,将问题转化为方程有解问题,是一道中档题;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网