题目内容

已知函数f(x)=
lnx
x

(Ⅰ)求函数f(x)的单调区间及其极值;
(Ⅱ)证明:对一切x∈(0,+∞),都有x(x-1)2ex+
x
e
>lnx
成立.
(Ⅰ)f′(x)=
1-lnx
x2
=0,解得x=e,
又x∈(0,+∞),
当x>e时,f′(x)<0,函数为减函数;当0<x<e时,f′(x)>0,函数为增函数.
所以f(x)的极大值为f(e)=
lne
e
=
1
e

(Ⅱ)证明:对一切x∈(0,+∞),
都有x(x-1)2ex+
x
e
>lnx
成立则有(x-1)2ex+
1
e
lnx
x

由(Ⅰ)知,f(x)的最大值为f(e)=
1
e

并且(x-1)2ex+
1
e
1
e
成立,当且仅当x=1时成立,
函数(x-1)2ex+
1
e
的最小值大于等于函数f(x)=
lnx
x
的最大值,
但等号不能同时成立.
所以,对一切x∈(0,+∞),都有x(x-1)2ex+
x
e
>lnx
成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网