题目内容
设变量x,y满足约束条件
,则目标函数z=4x+y的最大值为( )
|
| A、4 | B、11 | C、12 | D、14 |
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=4x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.
解答:
解:易判断公共区域为三角形区域,如图所示:
三个顶点坐标为(0,1)、(2,3)、(1,0),
将(2,3)代入z=4x+y得到最大值为11.
故选B.
三个顶点坐标为(0,1)、(2,3)、(1,0),
将(2,3)代入z=4x+y得到最大值为11.
故选B.
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
练习册系列答案
相关题目
设变量x,y满足约束条件
,则目标函数u=x2+y2的最大值M与最小值N的比
=( )
|
| M |
| N |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|