题目内容
已知函数f(x)=
sin(2x-
)+2sin2(x-
)(x∈R).
(I)求函数f(x)的最小正周期;
(II)求函数f(x)的单调增区间.
| 3 |
| π |
| 6 |
| π |
| 12 |
(I)求函数f(x)的最小正周期;
(II)求函数f(x)的单调增区间.
分析:(Ⅰ) 先利用 二倍角公式和两角差的正弦公式,将函数f(x)化简为y=Asin(ωx+φ)的形式,再由周期公式计算函数的最小正周期即可
(Ⅱ)将内层函数看作整体,结合正弦函数的图象和性质,解不等式2kπ-
≤2x-
≤2kπ+
,即可得函数的单调增区间
(Ⅱ)将内层函数看作整体,结合正弦函数的图象和性质,解不等式2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解答:解:(Ⅰ) f(x)=
sin(2x-
)+1-cos2(x-
)
=2[
sin2(x-
)-
cos2(x-
)]+1=2sin[2(x-
)-
]+1
=2sin(2x-
)+1
∴T=
=π
(Ⅱ)令2kπ-
≤2x-
≤2kπ+
,
解得kπ-
≤x≤kπ+
,k∈Z
即函数的递增区间为:[kπ-
,kπ+
],k∈Z
| 3 |
| π |
| 6 |
| π |
| 12 |
=2[
| ||
| 2 |
| π |
| 12 |
| 1 |
| 2 |
| π |
| 12 |
| π |
| 12 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
∴T=
| 2π |
| 2 |
(Ⅱ)令2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解得kπ-
| π |
| 12 |
| 5π |
| 12 |
即函数的递增区间为:[kπ-
| π |
| 12 |
| 5π |
| 12 |
点评:本题考察了二倍角公式和两角差的正弦公式的应用,三角函数的图象和性质,求复合函数单调区间的方法
练习册系列答案
相关题目