题目内容
已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,则点B到平面EFG的距离为( )A.
B.
C.
D.1
【答案】分析:利用题设条件推导出BD∥平面EFG,从而得到BD和平面EFG的距离就是点B到平面EFG的距离,作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,所以线段OK的长就是点B到平面EFG的距离.
解答:解:如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.
因为ABCD是正方形,E、F分别为AB和AD的中点,故EF∥BD,H为AO的中点.
由直线和平面平行的判定定理知BD∥平面EFG,
所以BD和平面EFG的距离就是点B到平面EFG的距离.
∵BD⊥AC,∴EF⊥HC.
∵GC⊥平面ABCD,∴EF⊥GC,
∵HC∩GC=C,∴EF⊥平面HCG.
∵EF?平面EFG,∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线.
作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,
所以线段OK的长就是点B到平面EFG的距离.
∵正方形ABCD的边长为4,GC=2,
∴AC=4
,HO=
,HC=3
.
∴在Rt△HCG中,HG=
=
.
由于Rt△HKO和Rt△HCG有一个锐角是公共的,
故Rt△HKO∽△HCG.
∴OK=
=
=
.
即点B到平面EFG的距离为
.
故选B.
点评:本小题主要考查直线与平面的位置关系、平面与平面的位置关系、点到平面的距离等有关知识,考查学生的空间想象能力和思维能力,属于中档题.解决此类问题应该注意从三维空间向二维平面的转化,从而找到解题的捷径.
解答:解:如图,连接EG、FG、EF、BD、AC、EF、BD分别交AC于H、O.
因为ABCD是正方形,E、F分别为AB和AD的中点,故EF∥BD,H为AO的中点.
由直线和平面平行的判定定理知BD∥平面EFG,
所以BD和平面EFG的距离就是点B到平面EFG的距离.
∵BD⊥AC,∴EF⊥HC.
∵GC⊥平面ABCD,∴EF⊥GC,
∵HC∩GC=C,∴EF⊥平面HCG.
∵EF?平面EFG,∴平面EFG⊥平面HCG,HG是这两个垂直平面的交线.
作OK⊥HG交HG于点K,由两平面垂直的性质定理知OK⊥平面EFG,
所以线段OK的长就是点B到平面EFG的距离.
∵正方形ABCD的边长为4,GC=2,
∴AC=4
∴在Rt△HCG中,HG=
由于Rt△HKO和Rt△HCG有一个锐角是公共的,
故Rt△HKO∽△HCG.
∴OK=
即点B到平面EFG的距离为
故选B.
点评:本小题主要考查直线与平面的位置关系、平面与平面的位置关系、点到平面的距离等有关知识,考查学生的空间想象能力和思维能力,属于中档题.解决此类问题应该注意从三维空间向二维平面的转化,从而找到解题的捷径.
练习册系列答案
相关题目
已知正方形ABCD的边长为1,设
=
,
=
,
=
,则|
-
+
|等于( )
| AB |
| a |
| BC |
| b |
| AC |
| c |
| a |
| b |
| c |
| A、0 | ||
B、
| ||
| C、2 | ||
D、2
|