题目内容
在等差数列{an}中,a1=-2012,其前n项的和为Sn.若
-
=2,则S2012=( )
| S2007 |
| 2007 |
| S2005 |
| 2005 |
分析:由等差数列{an}的前n项和公式Sn=na1+
d可得{
}为等差数列,由题意可求得d=2,从而可求得S2012的值.
| n(n-1) |
| 2 |
| Sn |
| n |
解答:解:∵数列{an}为等差数列,设其公差为d,则其前n项和为Sn=na1+
d,
∴
=na1+
d,∴
-
=
,
∴{
}为公差是
的等差数列,
∴
-
=2×
=2,可得d=2,
∵数列{an}为等差数列,a1=-2012,
S2012=2012a1+
×2=2012×(-2012)+2012(2012-1)=-2012,
故选B;
| n(n-1) |
| 2 |
∴
| Sn |
| n |
| n(n-1) |
| 2 |
| Sn+1 |
| n+1 |
| Sn |
| n |
| d |
| 2 |
∴{
| Sn |
| n |
| d |
| 2 |
∴
| S2007 |
| 2007 |
| S2005 |
| 2005 |
| d |
| 2 |
∵数列{an}为等差数列,a1=-2012,
S2012=2012a1+
| 2012(2012-1) |
| 2 |
故选B;
点评:本题考查等差数列的求和,分析得到{
}公差是
的等差数列是关键,也是难点所在,考查分析问题、解决问题的能力,属于中档题.
| Sn |
| n |
| d |
| 2 |
练习册系列答案
相关题目