题目内容

己知椭圆C:数学公式=1(a>b>0)的离心率为数学公式,A1、A2是椭圆的左右顶点,B1、B2是椭圆的上下顶点,四边形A1B1A2B2的面积为16数学公式
(1)求椭圆C的方程;
(2)圆M过A1、B1两点.当圆心M与原点O的距离最小时,求圆M的方程.

解:(1)依题意有:①…(2分)
四边形A1B1A2B2是以椭圆C的四顶点为顶点的菱形
可得:SA1B1A2B2=②…(4分)
由①、②联解,可得:
所以椭圆C的方程为:…(6分)
(2)依题意得
可得A1B1的中点为(-2,),A1B1的斜率k=
∴A1B1的垂直平分线l的斜率为k'==-
可得A1B1的垂直平分线l的方程为:y-=-(x+2),化简得…③(8分)
根据圆M过A1、B1两点,可得圆心M在l上,当圆心M与原点O的距离最小时,OM⊥l
∴OM的方程为…④(10分)
联立③、④得,得到…(12分)
由此可得
因此,此时的圆M方程为:…(14分)
分析:(1)根据椭圆的离心率和菱形A1B1A2B2的面积,建立关于a、b、c的方程组,解之可得,从而得到椭圆C的方程;
(2)根据题意,过A1、B1两点的圆的圆心M在A1B1的垂直平分线l上,且当OM⊥l时圆心M与原点O的距离最小.由此得到直线OM的方程与直线l方程联解得到M(-,-),再由MA1长得到圆M的半径,得到此时圆M的方程.
点评:本题给出椭圆满足的条件,求椭圆的方程并且求圆心M与原点距离最小时的圆M的方程,着重了椭圆的标准方程和简单几何性质、圆的标准方程等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网