ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪ£¨0£¬2£©£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö¤Ã÷£º¹ýÔ²x2+y2=r2ÉÏÒ»µãQ£¨x0£¬y0£©µÄÇÐÏß·½³ÌΪx0x+y0y=r2£»
£¨¢ó£©¹ýÍÖÔ²CÉÏÒ»µãPÏòÔ²x2+y2=1ÒýÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬µ±Ö±ÏßAB·Ö±ðÓëxÖá¡¢yÖá½»ÓÚM£¬NÁ½µãʱ£¬Çó|MN|µÄ×îСֵ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃb=2£¬ÔÙÓÉÀëÐÄÂʹ«Ê½¿ÉµÃa=4£¬b=2£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÌÖÂÛÇÐÏßµÄбÂÊ´æÔںͲ»´æÔÚ£¬ÓÉÖ±Ïߵĵãбʽ·½³Ì¼´¿ÉµÃµ½ÇÐÏß·½³Ì£»
£¨¢ó£©ÉèµãP×ø±êΪ£¨xP£¬yP£©£¬ÇóµÃ¹ýA£¬BµÄÇÐÏß·½³Ì£¬¿ÉµÃÇеãÏÒAB·½³Ì£¬ÔÙÓÉÁ½µãµÄ¾àÀ빫ʽºÍ»ù±¾²»µÈʽ¼´¿ÉµÃµ½×îСֵ£®
½â´ð ½â£º£¨¢ñ£© ÓÉÌâÒâ¿ÉµÃb=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ÓÖc2=a2-b2£¬
¼´ÓÐa=4£¬b=2£¬
ÔòÍÖÔ²C·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©Ö¤Ã÷£ºµ±ÇÐÏßµÄбÂÊk´æÔÚʱ£¬ÉèÇÐÏß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓÖÒòΪk=-$\frac{{x}_{0}}{{y}_{0}}$£®
¹ÊÇÐÏß·½³ÌΪy-y0=-$\frac{{x}_{0}}{{y}_{0}}$£¨x-x0£©£¬¼´ÓÐx0x+y0y=r2£®
µ±k²»´æÔÚʱ£¬Çеã×ø±êΪ£¨¡Àr£¬0£©£¬¶ÔÓ¦ÇÐÏß·½³ÌΪx=¡Àr£¬·ûºÏx0x+y0y=r2£¬
×ÛÉÏ£¬ÇÐÏß·½³ÌΪx0x+y0y=r2£»
£¨¢ó£©ÉèµãP×ø±êΪ£¨xP£¬yP£©£¬PA£¬PBÊÇÔ²x2+y2=1µÄÇÐÏߣ¬ÇеãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¹ýµãAµÄÔ²µÄÇÐÏßΪx1x+y1y=1£¬¹ýµãBµÄÔ²µÄÇÐÏßΪx2x+y2y=1£®
ÓÉÁ½ÇÐÏß¶¼¹ýPµã£¬x1xP+y1yP=1£¬x2xP+y2yP=1£®
ÔòÇеãÏÒABµÄ·½³ÌΪxPx+yPy=1£¬ÓÉÌâÖªxPyP¡Ù0£¬
¼´ÓÐM£¨$\frac{1}{{x}_{P}}$£¬0£©£¬N£¨0£¬$\frac{1}{{y}_{p}}$£©£¬
|MN|2=$\frac{1}{{{x}_{P}}^{2}}$+$\frac{1}{{{y}_{P}}^{2}}$=£¨$\frac{1}{{{x}_{P}}^{2}}$+$\frac{1}{{{y}_{P}}^{2}}$£©•£¨$\frac{{{x}_{P}}^{2}}{16}$+$\frac{{{y}_{P}}^{2}}{4}$£©
=$\frac{1}{16}$+$\frac{1}{4}$+$\frac{1}{16}$•$\frac{{{x}_{P}}^{2}}{{{y}_{P}}^{2}}$+$\frac{1}{4}$•$\frac{{{y}_{P}}^{2}}{{{x}_{P}}^{2}}$¡Ý$\frac{1}{16}$+$\frac{1}{4}$+2$\sqrt{\frac{1}{64}•\frac{{{x}_{P}}^{2}}{{{y}_{P}}^{2}}•\frac{{{y}_{P}}^{2}}{{{x}_{P}}^{2}}}$=$\frac{9}{16}$£¬
µ±ÇÒ½öµ±xP2=$\frac{16}{3}$£¬yP2=$\frac{8}{3}$ʱȡµÈºÅ£¬
Ôò|MN|¡Ý$\frac{3}{4}$£¬|MN|µÄ×îСֵΪ$\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£¬ÒÔ¼°Ö±Ïß·½³ÌµÄÔËÓã¬Í¬Ê±¿¼²é»ù±¾²»µÈʽµÄÔËÓãºÇó×îÖµ£¬ÊôÓÚÖеµÌ⣮