题目内容
设Tn为数列{an}的前n项之积,满足Tn=1-an(n∈N*).(1)设bn=
| 1 |
| Tn |
(2)设Sn=T12+T22+…+Tn2求证:an+1-
| 1 |
| 2 |
| 1 |
| 4 |
分析:(1)首先利用数列{an}的前n项积Tn与通项之间的关系分类讨论写出相邻项满足的关系式,然后两式作商,再利用bn=
,利用作差法即可获得数列{bn}是等差数列.由此可以求的数列{bn}的通项公式,进而求得Tn然后求得数列{an}的通项公式;
(2)Sn=T12+T22+…+Tn2=
+
+…+
,再进行放缩可证.
| 1 |
| Tn |
(2)Sn=T12+T22+…+Tn2=
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n+1)2 |
解答:解:(1)∵Tn=1-an(n∈N*).an=
(n≥2),∴Tn=1-
,∴1=
-
(n≥2)
∵bn=
,∴bn-bn-1=1,∵Tn=1-an,∴T1=
,∴b1=
=2,∴数列{bn}是以2为首项,以1为公差的等差数列,∴bn=n+1,∴Tn=
,∴an=1-
(2)Sn=T12+T22+…+Tn2=
+
+…+
>
+
…+
=
-
=an+1-
∴an+1-
<Sn
当n≥2时,=
+
+…+
<
+
+
…+
=
+
-
=an-
当n=1时,S1=a1-
∴Sn≤an-
,∴an+1-
<Sn≤an-
.
| Tn |
| Tn-1 |
| Tn |
| Tn-1 |
| 1 |
| Tn |
| 1 |
| Tn-1 |
∵bn=
| 1 |
| Tn |
| 1 |
| 2 |
| 1 |
| T1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
(2)Sn=T12+T22+…+Tn2=
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n+1)2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
∴an+1-
| 1 |
| 2 |
当n≥2时,=
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| (n+1)2 |
| 1 |
| 22 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 4 |
当n=1时,S1=a1-
| 1 |
| 4 |
∴Sn≤an-
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
点评:本题考查的是数列与不等式的综合类问题.在解答的过程当中充分体现了构造思想、放缩法解决不等式的证问题.
练习册系列答案
相关题目