题目内容
数列{an}的通项公式为an=2n+1,令bn=
则数列{bn}的前n项和为( )
| 1 |
| a1+a2+•••an |
分析:由an=2n+1,结合等差数列的求和公式可求a1+a2+…+an,然后利用裂项求和即可求解
解答:解:∵an=2n+1,
∴a1+a2+…+an=
•n=n(n+2)
∴bn=
=
=
(
-
)
∴数列{bn}的前n项和Sn=
(1-
+
-
+…+
-
+
-
)
=
(1+
-
-
)
=
-
故选D
∴a1+a2+…+an=
| 3+2n+1 |
| 2 |
∴bn=
| 1 |
| a1+a2+•••an |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列{bn}的前n项和Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
故选D
点评:本题主要考查了数列的裂项求和,解题中要注意裂项后的系数
不要漏掉.
| 1 |
| 2 |
练习册系列答案
相关题目