题目内容
【题目】已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)求
的单调区间;
(Ⅲ)若
在区间
上恒成立,求实数
的取值范围.
【答案】(Ⅰ)切线方程为
.
(Ⅱ)当
时,
的单调增区间是
和
,单调减区间是
;
当
时,
的单调增区间是
;
当
时,
的单调增区间是
和
,单调减区间是
.
(Ⅲ)
.
【解析】
试题分析:(Ⅰ)切线的斜率,等于在切点的导函数值.
(Ⅱ)通过“求导数,求驻点,讨论各区间导数值的正负”,确定函数的单调区间。本题应特别注意讨论
,
,
时的不同情况.
(Ⅲ)
在区间
上恒成立,只需
在区间
的最小值不大于0.
试题解析:(Ⅰ)因为
,
,
所以
, 1分
,
, 3分
所以切线方程为
. 4分
(Ⅱ)
, 5分
由
得
, 6分
当
时,在
或
时
,在
时
,
所以
的单调增区间是
和
,单调减区间是
; 7分
当
时,在
时
,所以
的单调增区间是
; 8分
当
时,在
或
时
,在
时
.
所以
的单调增区间是
和
,单调减区间是
. 10分
(Ⅲ)由(Ⅱ)可知
在区间
上只可能有极小值点,
所以
在区间
上的最大值在区间的端点处取到, 12分
即有
且
,
解得
. 14分
【题目】某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本
(单位:元/
)与上市时间
(单位:10天)的数据如下表:
时间 | 5 | 11 | 25 |
种植成本 | 15 | 10.8 | 15 |
(1)根据上表数据,从下列函数:
,
,
,
中(其中
),选取一个合适的函数模型描述该蔬菜种植成本
与上市时间
的变化关系;
(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.
【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:
每周使用次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成
列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?
(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.
① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;
②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为
,求
的分布列及数学期望.
附表及公式: ![]()
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |