题目内容
(2012•临沂一模)已知f(x)=sin(x+
)+cos(x+
).
(1)求f(x)的单调递减区间;
(2)若f(α)=
,求
的值.
| 5π |
| 4 |
| 3π |
| 4 |
(1)求f(x)的单调递减区间;
(2)若f(α)=
2
| ||
| 3 |
| sinα |
| 1+tanα |
分析:(1)利用三角函数的恒等变换化简f(x)的解析式为-2sin(x+
),令 2kπ-
≤x+
≤2kπ+
,k∈z,由此求得f(x)的单调增区间.
(2)由f(α)=
,求得sinα+cosα=-
,平方可得sinαcosα=-
.代入
=
,运算求得结果.
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
(2)由f(α)=
2
| ||
| 3 |
| 2 |
| 3 |
| 5 |
| 18 |
| sinα |
| 1+tanα |
| sinαcosα |
| sinα+cosα |
解答:解:(1)f(x)=sin(x+
)+cos(x+
)=-sin(x+
)-cos(x-
)
=-
sinx-
cosx-
cosx-
sinx=-
(cosx+sinx)=-2sin(x+
).
f(x)的单调递减区间就是函数2sin(x+
) 的单调增区间.
令 2kπ-
≤x+
≤2kπ+
,k∈z,解得 2kπ-
≤x≤2kπ+
,k∈z,
故函数f(x)的单调递减区间为[2kπ-
,2kπ+
].
(2)若f(α)=
,则-2sin(α+
)=
,
解得 sin(α+
)=
=-
.
∴sinα+cosα=-
,平方可得sinαcosα=-
.
∴
=
=
.
| 5π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=-
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 2 |
| π |
| 4 |
f(x)的单调递减区间就是函数2sin(x+
| π |
| 4 |
令 2kπ-
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 4 |
| π |
| 4 |
故函数f(x)的单调递减区间为[2kπ-
| 3π |
| 4 |
| π |
| 4 |
(2)若f(α)=
2
| ||
| 3 |
| π |
| 4 |
2
| ||
| 3 |
解得 sin(α+
| π |
| 4 |
| ||
| 2 |
| ||
| 3 |
∴sinα+cosα=-
| 2 |
| 3 |
| 5 |
| 18 |
∴
| sinα |
| 1+tanα |
| sinαcosα |
| sinα+cosα |
| 5 |
| 12 |
点评:本题主要考查三角函数的恒等变换及化简求值,复合函数的单调性,属于中档题.
练习册系列答案
相关题目