题目内容
设d为非零实数,an=
[Cn1d+2Cn2d2+…+(n-1)Cnn-1+nCnmdn](n∈N*)
(Ⅰ)写出a1,a2,a3并判断﹛an﹜是否为等比数列.若是,给出证明;若不是,说明理由;
(Ⅱ)设bn=ndan(n∈N*),求数列﹛bn﹜的前n项和Sn.
| 1 |
| n |
(Ⅰ)写出a1,a2,a3并判断﹛an﹜是否为等比数列.若是,给出证明;若不是,说明理由;
(Ⅱ)设bn=ndan(n∈N*),求数列﹛bn﹜的前n项和Sn.
(Ⅰ)由题意可知:a1=d,a2=d(1+d),a3=d(1+d)2,
当n≥2,k≥1时,
=
,
∴an=
d1+
d2+
d3+…
dn
=d(Cn-10d0+Cn-11d1+Cn-12d2+…+Cn-1n-1dn-1)
=d(d+1)n-1.
所以,当d≠-1时,{an}是以d为首项,d+1为公比的等比数列.
当d=-1时,a1=-1,an=0(n≥2),此时{an}不是等比数列.
(Ⅱ)由(Ⅰ)可知:an=d(d+1)n-1,
∴bn=nd2(d+1)n-1=d2n(d+1)n-1,
∴Sn=d2[1•(d+1)0+2•(d+1)1+3•(d+1)2+…+(n-1)•(d+1)n-2+n•(d+1)n-1],
当d=-1时,Sn=d2=1
当d≠-1时,
(d+1)Sn=d2[1•(d+1)1+2•(d+1)2+3•(d+1)3+…+(n-1)•(d+1)n-1+n•(d+1)n],
∴-dSn=d2[1+(d+1)+(d+1)2+(d+1)3+…+(d+1)n-1-n(d+1)n],
∴Sn=(d+1)n(nd-1)+1.
综上可知:Sn=(d+1)n(nd-1)+1,n∈N*.
当n≥2,k≥1时,
| k |
| n |
| C | kn |
| C | k-1n-1 |
∴an=
| 1 |
| n |
| C | 1n |
| 2 |
| n |
| C | 2n |
| 3 |
| n |
| C | 3n |
| n |
| n |
| C | nn |
=d(Cn-10d0+Cn-11d1+Cn-12d2+…+Cn-1n-1dn-1)
=d(d+1)n-1.
所以,当d≠-1时,{an}是以d为首项,d+1为公比的等比数列.
当d=-1时,a1=-1,an=0(n≥2),此时{an}不是等比数列.
(Ⅱ)由(Ⅰ)可知:an=d(d+1)n-1,
∴bn=nd2(d+1)n-1=d2n(d+1)n-1,
∴Sn=d2[1•(d+1)0+2•(d+1)1+3•(d+1)2+…+(n-1)•(d+1)n-2+n•(d+1)n-1],
当d=-1时,Sn=d2=1
当d≠-1时,
(d+1)Sn=d2[1•(d+1)1+2•(d+1)2+3•(d+1)3+…+(n-1)•(d+1)n-1+n•(d+1)n],
∴-dSn=d2[1+(d+1)+(d+1)2+(d+1)3+…+(d+1)n-1-n(d+1)n],
∴Sn=(d+1)n(nd-1)+1.
综上可知:Sn=(d+1)n(nd-1)+1,n∈N*.
练习册系列答案
相关题目