题目内容
如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1>(Ⅰ)证明:AC⊥QP;
(Ⅱ)当S取得最小值时,求cos∠A1QC1的值.
【答案】分析:(Ⅰ)要证明:AC⊥QP;只要证明AC垂直平面PCDQ即可.也就是证明AC垂直平面内的相交直线即可.
(Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,利用S=S1-S2.表示出面积S,当S取得最小值时,求出x的值,然后求cos∠A1QC1的值.
解答:解:(Ⅰ)连AC、BD,则AC⊥BD;
∵PB⊥底面ABCD,则AC⊥BP,∴AC⊥平面QPBD.
而QP?平面QPBD,∴AC⊥QP.(4分)
(Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,S=S1-S2
=
=
.(8分)
∵令
,则
,
∴当
即
时,S取得最小值.(11分)
此时,
,由余弦定理有cos∠A1QC1=
.(13分)
点评:本题考查棱柱的结构特征,余弦定理,是中档题.
(Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,利用S=S1-S2.表示出面积S,当S取得最小值时,求出x的值,然后求cos∠A1QC1的值.
解答:解:(Ⅰ)连AC、BD,则AC⊥BD;
∵PB⊥底面ABCD,则AC⊥BP,∴AC⊥平面QPBD.
而QP?平面QPBD,∴AC⊥QP.(4分)
(Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,S=S1-S2
=
∵令
∴当
此时,
点评:本题考查棱柱的结构特征,余弦定理,是中档题.
练习册系列答案
相关题目