题目内容
设函数
,其中
(1)当
时,判断函数
在定义域上的单调性;
(2)求
的极值点;
(3)证明对任意的正整数
,不等式
都成立。
(1)当
(2)求
(3)证明对任意的正整数
(1)单调递增(2)无极值(3)见解析
本试题主要是考查了导数在研究函数中的运用
(1)利用函数的导数得到导数符号与单调性的关系的运用。
(2)在第一问的基础上分析得到极值点。
(3)对于不等式恒成立的证明,主要是转化为函数的最值问题来处理的数学思想的运用。
解:(1)由题意知,
,
),
设
,其图象的对称轴为
,
,
所以
即
,
上恒成立,
,
时,
,
,
上单调递增。
(2)①由(1)得,
函数
无极值点;
②
时,
有两个相同的解
,
,
,
;
,
时,
,
,
上无极值;
③
时,
:
, 
,
,
,
:
由此表可知:
,
有唯一极小值点
;
当
时,
,所以
,
,
此时,
:
由此表可知:
时,
有一个极大值点
和一个
极小值点
综上所述,:
,
有唯一极小值点
;
时,
有一个极大值点
和一个极小值点
;
,
无极值点。
(3)设
,1〕,则不等式
化为
,
即
设函数
,则
所以,当
时,
函数
在〔0,1〕上单调递增,又
,1〕时,恒有
,即
,
因此不等式
成立
(1)利用函数的导数得到导数符号与单调性的关系的运用。
(2)在第一问的基础上分析得到极值点。
(3)对于不等式恒成立的证明,主要是转化为函数的最值问题来处理的数学思想的运用。
解:(1)由题意知,
设
所以
即
(2)①由(1)得,
②
③
| - | 0 | + | |
| 减 | 极小值 | 增 |
当
此时,
| ( | |||||
| + | 0 | - | 0 | + | |
| 增 | 极大植 | 减 | 极小值 | 增 |
极小值点
综上所述,:
(3)设
即
设函数
所以,当
因此不等式
练习册系列答案
相关题目