题目内容
已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:
那么函数f(x)在区间[1,6]上的零点至少有( )
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| f(x) | 123.5 | 21.5 | -7.82 | 11.57 | -53.7 | -26.7 | -29.6 |
| A.2个 | B.3个 | C.4个 | D.5个 |
由于f(2)f(3)<0,故连续函数f(x)在(2,3)上有一个零点.
由于f(3)f(4)<0,故连续函数f(x)在(3,4)上有一个零点.
由于f(4)f(5)<0,故连续函数f(x)在(4,5)上有一个零点.
综上可得函数至少有3个零点,
故选B
由于f(3)f(4)<0,故连续函数f(x)在(3,4)上有一个零点.
由于f(4)f(5)<0,故连续函数f(x)在(4,5)上有一个零点.
综上可得函数至少有3个零点,
故选B
练习册系列答案
相关题目
已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是( )
| A、f(2a)<f(3)<f(log2a) | B、f(3)<f(log2a)<f(2a) | C、f(log2a)<f(3)<f(2a) | D、f(log2a)<f(2a)<f(3) |