题目内容
【题目】公元
年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值
,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中
表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )
(参考数据:
)
![]()
A. 2.598,3,3.1048 B. 2.598,3,3.1056
C. 2.578,3,3.1069 D. 2.588,3,3.1108
【答案】B
【解析】解:结合题中所给的流程图可知,输出的
值为:
综上可得:执行此算法输出的圆周率的近似值依次为2.598,3,3.1056.
本题选择B选项.
【题目】下表是某校高三一次月考5个班级的数学、物理的平均成绩:
班级 | 1 | 2 | 3 | 4 | 5 |
数学( | 111 | 113 | 119 | 125 | 127 |
物理( | 92 | 93 | 96 | 99 | 100 |
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量
,
的线性回归方程
;
(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为
,求
的分布列和数学期望.
附:
, ![]()
【题目】在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如下表:
编号 成绩 | 1 | 2 | 3 | 4 | 5 |
物理( | 90 | 85 | 74 | 68 | 63 |
数学( | 130 | 125 | 110 | 95 | 90 |
(1)求数学成绩
关于物理成绩
的线性回归方程
(
精确到
),若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的五位学生中随机选出三位参加一项知识竞赛,以
表示选中的学生的数学成绩高于100分的人数,求随机变量
的分布列及数学期望.
(参数公式:
,
.)
参考数据:
,
.